
Physics Engine: Deformation Simulation

Abhishek Bhandwaldar

Department of Computer Engineering
Smt. Kashibai Navale College of Engineering

Pune, India

Mohan Ghule
Department of Computer Engineering

Smt. Kashibai Navale College of Engineering
Pune, India

Akshay Gandhi
Department of Computer Engineering

Smt. Kashibai Navale College of Engineering
Pune, India

Nikhil Bansode

Department of Computer Engineering
Smt. Kashibai Navale College of Engineering

Pune, India

Abstract— In a game simulation or any software where 3d
rendering is concerned, there are various aspect to be
considered. For example if we are producing an animated
movie, then there are various areas we need to concentrate
like the materials , their surface property, lighting, motion,
fluid surface simulation etc. Every field is vast and have
various physics engines available in market to simulate them.
This paper presents algorithm for simulation of deforming
bodies, calculating there deformation and generating impulse
force.

I. INTRODUCTION

In today’s games or any software related to graphics
requires a sophisticated framework for calculating motion.
A physics engine is a software framework or software API
which is capable of calculating various physical effects such
as rotation, gravity effect, ropes etc. and exporting it to an
animation software or a game engine to render a completed
motion.

During a graphics simulation of a game or any software
we have two choices for rendering motions and object
interactions, either we use precompiled motion paths or
calculate them. Calculating them is in itself a challenge and
a programmer needs to deal with the performance issues.
This paper primarily focuses on only one aspect which is
physics simulation, the deformation simulation. The method
mentioned in the paper only considers a cube but can be
further extended to encompass various shapes like sphere,
cylinder, etc.

The paper is divided into three different sections. The
first one presents simple collision detection algorithms. It
explains a very simplified approach for implementing the
collision detection module for a 3D cube and uses local co-
ordinate system rather than world co-ordinate system. The
second section introduces collision resolution and force
aggregation algorithm and presents various data structures
to store and manage various forces: their magnitude and
directions. The section deals with spring force calculation
and its use in simulating deformation and later on
calculating the resultant impulse and applying it. The paper
does not deal with the rendering part as it varies from
platform to platform.

II. RELATED WORKS

There exist many propriety physics engine specializing
in various aspect. Box2d is an open source physics engine

which specializes in 2D physics. The engine has been used
in many games including Crayon Physics Deluxe, Limbo,
Rolando, Fantastic Contraption, Incredibots, Angry birds. It
can simulate bodies composed of convex polygons, circles
and edges. It can be used for constraint rigid body
simulation. The engine is completely written in platform
independent C++ and is used on several mobile phones
including iPhone, Android phone and Black Berry 10. It
was also used in Nintendo and Wii.

Another famous physics engine is Havok Physics
engine. The engine specializes in destruction simulation,
capable of rendering and calculating physics of more than
one object of varied shapes in real time and can still
maintain performance. It also specializes in cloth simulation
and can be used as a middleware for animation software, or
in game engines. This engine was used in more than 500
games aimed at various platforms like the PC, PlayStation,
and Xbox. Havok also has been used in products like
Autodesk 3ds max, Autodesk Maya, Autodesk Softimage.

PhysX, a proprietary physics engine and middleware
SDK by NVidia, specializes in optics and ray tracing. The
engine is mainly used for rendering various effects like rigid
body dynamics, soft body dynamics, ragdolls and character
controllers, vehicle dynamics, volumetric fluid simulation
and cloth simulation including tearing and pressurized cloth.
The engine is known for its hardware acceleration and its
support for CUDA.

The paper presents physics engine which specializes in
deformation simulation and hence finally in soft body
simulation, by new approach.

III. COLLISION DETECTION

Fig. 1 Physics Engine Pipeline

Abhishek Bhandwaldar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2662-2664

www.ijcsit.com 2662

The engine is divide into various phases. As shown the
first phase is collision detection in which we detect collision
pairs and prepare collision data. The collision table is further
used for contact data generation. Next stage in physics
pipeline is impulse calculation and hence calculating
velocity, of objects involved in collision. Impulse is
calculated by first calculating the deformation and then
calculating impulse magnitude. The final phase is rendering.
We need to apply final transformations on the vertex data
and send it to the render engine. The paper only focuses of
on first two phases.

The first phase, namely collision detection is the primary
phase of engine. We use vector mathematics for calculation
as 3D figures are involved. Firstly we need a specialized
data structures to store figures, their various physics related
attributes and a table for storing contact data.

To detect if two figures are colliding or not, we need to
find the projections of the extreme ends on a normalized
vector. Ones we have that we can simply find whether the
two figures are colliding or not. Consider we have two
cubes cube A and cube B and we want to detect if they are
colliding or not. We consider the local coordinate axis rather
than the world coordinate axis. We need to find first, normal
of two adjacent faces. This two normal will be
perpendicular to each other. Consider this two normal as the
X and Y axis.

The vector normal to above two vector would be our
third axis the Z axis, but we do not need that axis yet. But
the face for which that axis is normal is needed. We
consider that face only and the two normal as the x axis and
y axis. For the second cube we need to find face which is
facing the same direction as the normal. We only consider
the extreme ends of the faces i.e. the points shown in
following fig__. Hence our problem is reduced to 2D
collision detection. Now we simply apply the AABB
algorithm to see whether the two faces are colliding.

Now we repeat the same process except interchanging
the roles of the cubes. The end result tells us whether the
cubes are colliding or not in reference to the two axis. Now
we repeat same above procedure except now we consider
the x axis and z axis. The result returned from this
computation tells us whether the cubes are colliding along X
and Z axis. The combined result of above two tells us
whether the two cubes are actually colliding.

Fig. 2 Cube with its local co-ordinate system

Once we detect there collision we enter the pair in
collision table. Next we need collision normal for further
calculations. Collision normal is used for calculating the
impulse direction and hence the direction in which the cubes
will be thrown after the collision. Collision normal differs
from figure to figure. As we are only working on cube,
collision normal is face normal which is involved in
collision. If we have a face and edge collision then collision
normal is the face normal of that cube. If we have face-face
collision then collision normal of any face would suffice.

IV. IMPULSE RESOLUTION THROUGH DEFORMATION

CALCULATION

The Next step in our physics engine is impulse
resolution. In actual collision bodies deform slightly and
hence a force is generated. This force is responsible for
pushing the bodies outward. In our scenario we have two
cubes which are actual 8 particles per cube connected by
spring. Hence every edge of the cube actually represents a
spring. In soft-body simulation, the object is collection of
particles with each connected through spring to other. Hence
to simulate a complete soft body all we need to do is
interpolate the presented algorithm for complex bodies.

First we need to simulate a simple spring in our physics
engine. A spring in our context is a line with two particles
attached at ends and the line acting as an actual spring. To
simulate an actual spring we need Hooke’s law, given as

 f = - k ∆ l
When it comes to three dimensions, we need to generate

a force vector rather than a scalar. The corresponding
formula for the force is
 f =−k (|d| − l0) d

Here vector d (non-bold) denotes difference between the
two ends of the spring, l0 natural length of spring and d
(Bold) denotes the normalized vector form of d. We use a
separate structure known as force registry to store all the
force acting on the body. Later on we find the resultant
force by using the D’Alembert principal. Now we move on
to actual deformation simulation. The first phase has
returned us the pairs of collided cubes and the collision
table. The collision table consist of the contact data such as
the collision normal. The next step would be to first
simulate deforming bodies and then apply impulse and
calculate separating velocities.

Fig. 3 Face of the cube

Abhishek Bhandwaldar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2662-2664

www.ijcsit.com 2663

When two bodies collide we need to calculate how much
compressed or deformed they become. A cube is made up of
eight particles, so we will divide particles in two sets. The
first set consist of no colliding particle and second set
consist of colliding particles. Hence when the cubes collide
the two faces involved in collision are affected. The
particles on this two faces are put in the colliding particle set
and the remaining are put in non-colliding particle set. Next
we set the velocity of all particle in colliding set to zero.
Hence preventing it from going through each other. Now the
non-colliding set particle’s velocity is still non-zero and
they keep on moving. Hence the shape of the box keeps on
changing but we need a decelerating force to stop the
particles.

Fig. 4 Deformation during the collision

This force is given by the spring which are its edges.
Hence the moment, the collision is detected we change the
velocities of particle in the colliding set to zero and we start
applying spring force on the particle in non-colliding set.
After some time the particles’ velocities will become zero,
at this point we have a complete collision and we have the
springs compressed and storing energy in them. Now we use
this spring force and apply it to the non-colliding particle set
and start updating the simulation. It appears that the cubes
are regaining their shapes and at certain point when the
springs between particles gain their natural length we put all
the particles from colliding set to non-colliding set and
update all particles. Hence the whole cube gets updated and
impulse gets applied. The best thing about using spring
force is it always exits opposite to the force applied to it, in
our case the initial momentum of bodies. Hence the
resultant force is in opposite direction to that of collision.
This algorithm can be further interpolated for complex
figures like sphere of irregular bodies. And hence we can
achieve the soft body simulation. We can also assume a
cube and surface by just considering cube of same size as
the first body and having infinite mass.

V. FUTURE SCOPE

As mentioned above the method can be further extended
for softbody simulation. Softbody simulation is a costly
operation and cannot be implemented in real time with other
physical effects. By using this algorithm we can implement
the softbody simulation in real time and use it in game
software and other products demanding real time
simulation. Further this method can be extended for
simulation of malleable objects. Malleable objects are those
objects which deforms after collision and stays in deformed
state only.

With slight modification we can use this to make a
software which can simulate various complex malleable
shapes. This algorithm can be used for software or products
demanding effect rather than precision. Another field where
this method can be useful is in simulation of destructible
mesh objects. Destructible objects involve deformation and
fracture generation. Again this algorithm can be used for
deformation calculation.

VI. CONCLUSION

Physics Engine can be used for calculating not only
complex motions but also to render various physical effects
like rigid body deformation. This paper presents a basic
algorithm for simulating deformation of simple bodies.

ACKNOWLEDGMENT

This research was supported by Smt. Kashibai College
of Engineering, Sinhgad Technical Education Society, and
University of Pune. We also like to express our regards
towards Prof. G. R. Shinde, Computer department of
SKNCOE, Pune for their continuous support and giving us
the useful resources in developing the physics engine.

REFERENCES

[1] David M., Bourg, Bryan Bywalec, “Physics for Game
Developers”, O’reilly 2013.

[2] Ian Millington, “Game Physics Development”, Moran
Kufman publishers, Elsevier 2007.

[3] Wang Xiao-rong, Wang Meng, Li Chun-gui, “Research on
Collision Detection Algorithm based on AABB”.

[4] John D. Owens, Mike Houston, David Luebke, Simon Green,
John E. Stone, etc. “Gpu Computing”, vol. 96, No.5, May
2008.

[5] Chang Liu, Yue Cao, Xiangi, Quan Xu, Leiting Chen,
“Phusis Cloth: A Physics Engine for Real-time Character
Cloth Simulation”, IEEE 2012.

[6] Yue Cao, Leiting Chen, Chang Liu, Xiao Liang, Hongbin
Cai, “Phusis studio: A Real-time Physics Engine for Solid
and Fluid Simulation”, IEEE 2011.

Abhishek Bhandwaldar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2662-2664

www.ijcsit.com 2664

